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Bifurcation of swirl in liquid cones 
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We show that rotation appears owing to bifurcation in primarily pure meridional 
steady motion of viscous incompressible fluid. This manifestation of the laminar 
axisymmetric ‘swirl dynamo’ occurs in flows inside liquid conical menisci with the cone 
half-angle 0, < 90”. The liquid flows towards the cone apex near the surface and moves 
away along the axis driven by (i) surface shear stresses (typical for electrosprays) or (ii) 
by body Lorentz forces (e.g. in the process of cathode eruption). When the motion 
intensity increases and passes a critical value, new swirling regimes appear resulting 
from the supercritical pitchfork bifurcation. This agrees with recent observations of 
swirl in Taylor cones. We find that when the swirl Reynolds number r, reaches a 
threshold value, flow separation occurs and the meridional motion becomes two- 
cellular with inflows near both the surface and the axis, and an outflow near the cone 
8 = 8,, 0 < 8, < 8,. In the limit of high r,, the angular thickness of the near-surface cell 
tends to zero. In case (i) the swirl is concentrated near the surface while the motion 
inside the inner cell becomes purely meridional with the radial velocity being uniform. 
We also study the two-phase flow of a liquid inside and a gas outside the meniscus. 
Flow separation occurs in both media and then swirl is concentrated near the interface. 
In case (ii) we reveal another interesting effect : a cascade of flow separations near the 
axis. As the driving forces increase, meridional motion becomes multi-cellular although 
very slow in comparison with swirl. To cover all ranges of parameters we combine 
numerical calculations and asymptotic analyses. 

1. Introduction 
1.1. Review of previous studies of swirl generation 

The appearance of swirl due to bifurcation of a primarily non-swirling flow (‘swirl 
dynamo ’) seems to be a more striking and intriguing manifestation of symmetry 
breaking in comparison with, for example, heat convection onset and even the 
hydromagnetic dynamo. The reason is the conservation law of angular momentum. 
For the swirl dynamo to occur, a separation mechanism or a source of angular 
momentum must start to act at critical values of control parameters. 

The problem of swirl generation has been widely discussed for the case of the 
bathtub vortex, see e.g. Ogawa (1993). It is still questionable whether this phenomenon 
relates to symmetry breaking or external forcing; however, there are experimental 
results in favour of the former. A steady flow toward a sinkhole at the bottom centre 
of a rectangular box was experimentally studied by Kawakubo et al. (1978). When the 
flow rate exceeds a threshold value, rotation is observed and its intensity depends on 
the flow rate as at a supercritical bifurcation. Torrance (1979) observed swirl 
generation in a confined flow. In this experiment, thermal convection is induced in a 
sealed can by a local source of heat at the centre of the bottom. Also, there is a 
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temperature gradient at the sidewall, corresponding to stable stratification. There is a 
pure meridional circulation with an ascending jet near the axis and descending flow 
along the sidewall; however, at some parameter values, the jet begins to rotate. An 
interesting phenomenon occurs in a glass of water that oscillates in a horizontal 
direction: at some values of the oscillation amplitude and frequency, the surface wave 
begins to rotate (see a review and recent experiments in Funakoshi & Inoue 1988). 

Observations have been made of swirl generation in flows of conducting liquids 
driven by surface (Fernandez de la Mora, Fernandez-Feria & Barrero 199 1 ; Fernandez- 
Feria, Fernandez de la Mora & Barrero 1995; and A. Gomez 1992, personal 
communication) or body (Bojarevics et af .  1989) electrical forces ; these experiments are 
closer to this paper’s subject. Surface-stress-driven flows (SSF) are related to so-called 
Zeleny-Taylor cones. Zeleny (1917) found that the meniscus of a conducting liquid at 
the exit of a capillary tube takes a conical shape when the tube is charged to a 
sufficiently high potential. Taylor (1964) explained that this shape is the result of a 
balance between the action of electrical pressure and surface tension when the liquid 
is at rest. In a small vicinity of the cone apex, destruction of the liquid surface takes 
place and a thin jet or spray erupts; the jet diameter may be more than lo3 times 
smaller than the inner diameter of the capillary tube (Fernandez de la Mora 1992). In 
recent years, this phenomenon has attracted the attention of many researchers because 
of a wide and rapidly growing area of electrospray applications - from paint spraying 
and jet printing to fuel atomization and biotechnology (Bailey 1988; Fenn et af. 1989). 
As a result, striking new features have been revealed. In contrast to earlier conjectures 
that the flow inside the cone is always unidirectional, experiments discovered a 
circulatory meridional motion (Hayati, Bailey & Tadros 1986a, b). This circulation is 
driven by surface shear stresses 70r = co E, E,. Here c0, E, and E, are the vacuum 
permittivity, and the normal and tangential components of the electric field at the 
liquid surface, respectively. For liquids with a high electrical conductivity, 70r is so 
small that no noticeable circulatory motion appears and the liquid inside the cone 
moves as a purely radial sink (Fernandez de la Mora & Loscertales 1994). However, 
for liquids with a small electrical conductivity and viscosity, rO, induces the circulatory 
motion. The liquid moves towards the apex along the meniscus surface but away from 
the apex near the axis. In addition to this meridional flow we have observed swirl inside 
Taylor cones. Fernandez-Feria et a f .  (1995) have considered, in the boundary layer 
approximation, the liquid motion driven by surface shear stresses I-~, N rn, where r is 
the distance from the apex. Gaiian-Calvo (1995) has proposed n = -5 /2  (see also 
Barrero et al. 1995a) since E, - r-2, owing to electrical conduction through the bulk, 
and E, - rP1l2 (Taylor 1964). Barrero et al. have shown that the assumption of high 
Reynolds numbers is well satisfied for motions inside Taylor cones of liquids with 
sufficiently small conductivity and viscosity. 

A different mechanism which may be speculatively thought of as the driving force for 
the circulation inside Taylor cones is the electric Marangoni effect (EME). The 
Marangoni effect is the appearance of shear stresses due to a gradient of surface 
tension. Similar to temperature and surfactant concentration, an electric field changes 
the density of free energy at the liquid surface and therefore changes the surface 
tension. EME yields the surface stress distribution with n = -2 (Shtern & Barrero 
1994). 

We assume here that 7,r - r-2,  which allows us to describe the induced flow by 
applying the conical similarity class of exact solutions of the Navier-Stokes equations 
(NSE), i.e. to reduce the NSE to a system of ordinary differential equations (ODE). It 
is worth noting that, independently of the physical nature of the driving forces and the 
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FIGURE 1. Schematics of (a) one-medium and (b) two-medium problems when the motion is driven 
by surface shear stresses ror and (c) photograph of a conical meniscus. Azimuthal stresses at the 
surface 7@# are zero in the one-medium case and continuous in the two-medium case. The 
coordinates, typical streamlines and shear stress directions are shown. 

exact value of exponent n, the conically similar solutions of the NSE, which provide a 
description of the motion at finite Reynolds numbers as well, are not just interesting 
themselves but can also serve as a reference for the more general case of arbitrary n 
which needs the full NSE and can be reduced to ODE only in the boundary layer 
approximation. Figure 1 shows the schematics of (a) the one- and (b) two-medium 
problems considered here together with (c) a photograph of a conical meniscus. For 
completeness the whole range (0, n) of the liquid cone half-angle 8, is considered; 
however, we find that the laminar axisymmetric swirl dynamo occurs only for 8, < x / 2 .  
Some preliminary results for the one-medium SSF have been reported in Shtern, 
Goldshtik & Hussain (1994). Here these results are substantially extended by flow 
separation and asymptotic analyses, and also the quite new two-medium problem is 
studied. 

For very high (metallic) conductivity, the meridional motion is driven by 
electromagnetic (Lorentz) body forces. Conical menisci of a high-conducting medium 
arise on the cathode surface of plasmatrons and in electric arcs (Bojarevics e f  al. 1989). 
It is not easy to study the flow inside the menisci under controlled conditions; 
nevertheless, there are some intriguing experimental results. One such experiment 
(using a planar free surface) is described in Bojarevics et al. (1989). Mercury filling a 
hemispherical copper container (36 cm in diameter) is in meridionai motion converging 
to the axis near the free surface, being directed down near the axis and up along the 
wall. This circulation is driven by the electric current from a small electrode situated 
in the centre of the free surface, with the wall serving as the second electrode (see the 
schematic in figure 2a). If the electric current J < 15 A, then no swirl is observed; but 
for J > 15 A, the meridional motion is accompanied by swirl which increases with J. 
There is no obvious external force which can produce the observed rotation. The 
Earth’s magnetic field seems not to be the cause since the flow diverging near the free 
surface does not rotate even at the maximum current in the experiment, J = 1500 A. 
The strongest argument in favour of swirl generation due to symmetry breaking is that 
there is the threshold value of Jfor the onset of rotation. Here we consider a generalized 
and idealized problem for body-force-driven flows (BFF) : the free surface is considered 
to be conical with the cone half-angle in the range 0 < 8, d n/2, and the conical region 
is supposed to be infinite (figure 2b). We study (i) how to control flow patterns in the 
menisci with the help of rotation driven by a given circulation at the free surface and 
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FIGURE 2. Schematics of (a) experiment by Bojarevics et al. (1989) and (b) theoretical problem when 
the motion is driven by body forces. The dashed rays with arrows show a spherically uniform electric 
current and the curves with arrows show typical streamlines. In the experiment, the liquid (mercury) 
also rotates when the electric current J from electrode A (rod) to electrode (C) (copper wall) exceeds 
15 A. 

(ii) the possibility of a swirl dynamo when the surface is shear stress free, and rotation 
appears as a result of bifurcation. 

Previous theoretical predictions of self-rotation were related to unsteady motions 
(Funakoshi & Inoue 1988; Goldshtik, Shtern & Zhdanova 1984) or some turbulence 
models (Goldshtik & Shtern 1988, 1990). Here we show that swirl generation can also 
be predicted in laminar flow by bifurcation analysis of steady axisymmetric solutions 
of the NSE for both the SSF and BFF cases. Looking for bifurcation of the SSF we 
consider the primary non-swirling flows corresponding to analytical solutions found by 
Yatseev (1950) and Squire (1952). Features of new self-swirling flows are compared 
with that of the forced-swirling flows studied by Goldshtik & Shtern (1990). 

The primary non-swirling flows in the BFF case correspond to the self-similar 
solutions of the NSE with meridional body forces. These flows were predicted by 
Zhigulev (1960) and studied by Lundquist (1969), Shcherbinin (1969), Shercliff (1970), 
Sozou (1971), Narain & Uberoi (1971) and others. (We refer the reader to more 
detailed reviews by Bojarevics et al. 1989 and Petrunin & Shtern 1993.) Two 
intriguing effects were found: (i) collapse and (ii) inversion of the meridional flow by 
an imposed rotation. The collapse means a loss of the existence of similarity solutions 
due to the appearance of a singularity at the axis. For one-cell MHD flow without 
rotation, the collapse was first found by Sozou (1971) for a half-space region and by 
Narain & Uberoi (1971) for cones. The inversion, which is a kind of internal flow 
separation, was found by Bojarevics, Sharamkin & Shcherbinin (1977) in the problem 
when rotation was forced by a particular distribution of the axial magnetic field. Since 
both effects are found to be rather closely related to the swirl dynamo problem, we 
study, in addition to the self-swirling regimes, forced-swirling flows with given 
circulation at the cone surface to examine the following new effects: a cascade of 
internal flow separations and a collapse of multi-cell regimes. 

1.2. Observation of swirl in Zeleny-Taylor cones 
As we mentioned above there have been observations of swirl in Zeleny-Taylor cones. 
Before the following theoretical study we report here our recent observations of this 
phenomenon. Photographs in figure 3 show trajectories of air bubbles inside an 
electrified meniscus. The flow is a combination of a meridional motion and swirl 



Bifurcation of swirl in liquid cones 173 

FIGURE 3. Air bubble paths inside electrified heptane menisci. The ejected flow rate, Q = 
3.9 x m3 s-l was the same for the four cases (a-d). Two values of electrical potential difference 
between needle and ground electrode were applied: the one corresponding to (a) and (b) being smaller 
than that for (c) and (d ) .  

although there is no obvious swirl forcing. The liquid (heptane doped with a small 
amount of the antistatic Stadis 450, Du Pont, for enhancing of its electric conductivity) 
is injected through a capillary needle (0.35 mm inner radius) connected to a potential 
of 4 KV relative to the ground electrode. Outside the needle, a nearly conical meniscus 
forms and a jet is emitted from its vertex. The parameters are: the liquid density of 
684 kg m-3, viscosity of 4.6 x N m-l, 
electrical conductivity of 2 x S m-l, and flow rate 3.9 x 10-l' m3 s-l. The estimated 

kg mpl s-', surface tension of 21 x 
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Reynolds number is of order 100 (Fernandez-Feria et al. 1995). For such values our 
theory predicts one more effect, which has not been yet observed in experiment: flow 
separation. 

2. General problem formulation 
2.1. Reduction to a boundary value ODE problem 

We consider steady flows of a viscous incompressible fluid possessing conical similarity 
and admitting the representation 

v n x )  v9 = - 
r ' e -  rsine' r sin 8' 

- V k W  v VkW 

Here (r,  8,$) are the spherical coordinates; r is the distance from the origin; B and 
$ are polar and azimuthal angles (see figures 1 and 2);  u,, uo, v6, Y, p ,  p, v and I; are 
velocity components, Stokes stream function, pressure, density, kinematic viscosity 
and external body force, respectively; $, r, q andf are dimensionless functions; the 
prime denotes differentiation with respect to x. Studying the possibility of spontaneous 
generation of swirl, we assume that the azimuthal component of the body force is zero, 
f +  = 0, i.e. there is no external forcing of the azimuthal motion. 

Substitution of (1) into the Navier-Stokes equations, exclusion of pressure and 
simple calculations yield 

(2) 
(3) 

The boundary conditions at the axis, x = 1, follow from representation (1) and the 

(1 -xz)  ~ iv-4x11.y"/ - (~2/2) / ' /  = 2 r r 7 ( 1  -X2)-22fe(i -x2)-1/2+f;, 

(1 -x2) r" = kr!.  

requirement of velocity boundedness : 

Note that condition (5) is not trivial because x = 1 is a singularity point for equation 
(2) .  Three other conditions have to be satisfied at the cone surface, x = x,. They need 
to be discussed in more detail. 

2.2. Conditions at the cone surface 
The first of these conditions is the impermeability requirement, 

The other two conditions concern the shear stresses, 
7 8 ,  = [( 1 - x 2 )  I+?" + 2$] pv2(r2 sin 8)-', 

704 = [( 1 - x 2 )  r' + 2 x r ]  pv2(r2 sin2 B)-l 

A value of the radial stress, To,., is given at the surface, and taking into account (7) and 
(8) this condition can be written in the form 

(10) (1 - x,2)'/' $"(x,) = -Re,, 
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where dimensionless parameter Re, = - r270,/( p?) characterizes the intensity of the 
surface forcing and is a kind of Reynolds number. The 'minus' sign is used to make 
Re, positive when 7,, is directed towards the origin (this direction is relevant for this 
paper's context). When the motion is driven by body forces we assume that the surface 
is free, i.e. Re, = 0. 

The requirement that there is no forcing of the azimuthal motion at the cone surface 
and (9) give 

(1 1) 
(This is valid for the one-medium problem; in the two-medium case, 704 must be just 
continuous across the interface, see $3.) 

Note that the normal stresses induced by the motion are not zero at the liquid 
surface. They are balanced by surface tension which makes the meniscus shape not 
exactly conical. This distortion is neglected here for the reasons discussed below. 

The form of the liquid surface is the result of the normal stress balance, (T, + r,, + 
( T ~  = 0. Here the terms are contributions from the electric field, surface tension, and 
motion, respectively. Without motion, the balance gives the conical form of the liquid 
meniscus (Taylor 1964). To estimate the role of ( T ~  one has to take into account that 
the motion is driven by 7or. Therefore ( T ~  and 7or are of the same order of magnitude. 
The shear stresses are induced by the electric field, and ratio T, , / (T~  is proportional to 
EJE,. Here E, and E, are the tangential and normal components of the electric field 
at the liquid surface, respectively. For menisci of electrosprays, the liquid surface is 
nearly equipotential, which means that the electric field is nearly normal to the surface, 
i.e. EJE,  4 1. 

The value of E, depends on the electric conductivity K :  E, - I / (Krz) .  Taylor found 
that E, - yliz(c0 r)-'", where y is the liquid-gas surface tension. For polar liquids, 
Fernandez de la Mora & Loscertales (1994) experimentally found that Z -fcB)(QKy)'/', 
where Q is the flow rate and f is an empirical function of the liquid to vacuum 
permittivity ratio /3. Gaiian-Calvo (1995) has theoretically foundfcB) - pl/' which has 
been experimentally corroborated by Barrero, Gaiian-Calvo & Davila (1995 b). 
Therefore EJE,  - ( Q S ~ ) ' / ~ ( ~ ~  K/31/2)-1/2. Typical values for the electrospraying of 
methanol are: Q = loplo m3 s-l, K = 8.5 x S m-l, /3 = 33.6, and a typical needle 
radius is 5 x m. This yields EJE,  - lo-'. For non-polar liquids, we can use 
directly experimental values of I (Barrero et al. 1995a) obtained for electrospraying 
a mixture of heptane dopped with a small amount of the antistatic Stadis 450, with 
K = 2 x lop6 S m-l, y = 0.021 N m-'. For Q = m3 s-l, and voltage 4200 V, the 
measured current was I =  18 x lo-' A. Then EJE,  - 0.016 near the needle and 
E,/E, < 0.2 for r > 0.9 x 

Thus, in typical electrosprays ( T ~ / ( T ~  4 1 and, therefore, the motion influence on the 
meniscus shape is very small. This supports our approximation where ( T ~  is neglected 
in the above balance and the liquid surface is conical and fixed. Photographs of the 
electrospray menisci (e.g. see Shtern & Barrero 1994 and the photographs in this paper) 
show that the liquid surface is indeed nearly conical. 

In the case of body forces, the surface shape is governed by the same terms and the 
motion contribution can be again negligible. Bojarevics et al. (1989) did not observe 
any significant distortion of the liquid metal surface induced by the motion. This 
supports our idealization that the liquid surface is not disturbed by the motion in the 
body-force problem. 

(1 - x;) T'(x,) + 2x, T(X,) = 0. 

m. 
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2.3. Introduction of an auxiliary function 

Thus, conditions (4)-(7), (lo), and (1 1) close the boundary value problem for system 
(2) and (3). To simplify our analysis, it is useful (following Goldshtik 1960) to introduce 
an auxiliary function F, denoting the right-hand side of (2) as F"', so that 

(1 - x 2 )  Frr' = 2I'I'' - 2f0( 1 - x ' ) ~ ' ~  + (1 - x2) f :. (12) 

(1 -~ ' )$ '+2~$-$~ /2  = F. (13) 

This allows integration of (2) three times yielding 

As we will apply (12) and (13) instead of (2), it is useful to formulate boundary 
conditions for F. Two of the boundary conditions are at the axis, 

F( 1) = F'( 1) = 0, (14) 

(l-~')V+2$-$$' = F'. (1 5 )  

which follow from (4), (9, (13), and the first derivative of (13), 

The third condition is at the surface. Evaluating (1 5) at x = x ,  and taking into account 
(7) and (lo), we have 

F'(x,) = - Re,( 1 - x:)lI2. (16) 
Therefore, when the body forces and circulation are given, one can find F by 

integrating (12) with conditions (14) and (16). We will use this in our asymptotic 
analyses. 

2.4. Possibility of swirl bifurcation 
Equation (3) with conditions (6) and (1 1) has the trivial solution I' = 0. Our goal is 
to find a non-trivial solution and to study when such a solution branches from the 
trivial one. The necessary condition for such a bifurcation is that problem (3), (6) and 
(1 1) has a non-zero solution at a given $. This corresponds to an infinitesimal value 
of the swirl r when the influence of r on $ is negligible. Since the existence of the non- 
zero solution depends on +, its nature itself needs to be analysed first. 

In this linear (with respect to swirl) problem, the term 2I'T in (12) is neglected, and 
integration of (12) with conditions (14) and (16) gives F independent of $. To find $ 
one needs to integrate (13) with condition (7). (Conditions (4) and ( 5 )  are satisfied 
automatically due to (14).) Equation (13) can be transformed into a linear one by 
introducing a new variable U,  such that 

(17) 

(18) 

$ = - 2( 1 - x2) U'/  u. 

U" + iF( 1 - x ~ ) - ~  U = 0, 

Substitution of (17) in (13) yields 

and we apply the conditions 

U(X,) = 1, U'(X,) = 0. 
The first condition (normalization) is formulated without any loss of generality, since, 
according to (17), U(x)  is determined up to an arbitrary numerical factor. The second 
condition (19) follows from (7) and (17). Thus, we have to solve the initial-value 
problem (18) and (19) in the interval x ,  < x < 1. For $ to be bounded, U must not 
become zero inside the interval. 
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At zero forcing, F = 0, the solution is U = 1, and therefore for small F there is no 
zero of U inside the interval. For the swirl-free SSF flows, F is found explicitly as 
follows from (12), (14) and (16): 

F = +F”( 1) (1 - x ) ~ ,  F”( 1) = Re,[( 1 + x,)/( 1 - x , ) ] ~ ’ ~ ,  

For Re, > 0, we see that I: > 0. Also for the non-swirling BFF flows, it will be shown 
in 54.6.1 that F 0. When F is positive, curvature U“ is negative for U > 0 owing to 
(18). Then it follows from (19) that U’ is negative for x > x, and IU’I increases with 
x. Therefore, U(x)  must pass zero at some x = xp. Because of (17), this means that y? 
has a pole at x = xp. While F is small, the pole is outside the interval, i.e. xp > 1. As 
F increases, xp approaches and can pass the interval boundary x = 1. The event when 
xp reaches 1 is called collapse. In a near-collapse situation, a strong jet forms flowing 
away from the origin near the axis, and the axial velocity becomes infinite at the 
collapse. It has been shown that collapse does occur in the cases of both surface 
(Goldshtik & Shtern 1990) and body (Sozou 1971 ; Narain & Uberoi 1971) forcing. We 
will show now that the collapse phenomenon is closely related to the swirl dynamo. 

Substituting (17) in (3) and integrating we get T’ = r ’ ( x , )  V2 .  Then integrating once 
more, using the normalization I@,) = 1 (which is possible in this linear problem), and 
condition (1 1) we find that 

Since we have to satisfy (6), (20) gives a necessary condition for a swirl dynamo: 
rl = 0. It is evident from (20) that the swirl dynamo is impossible when x, < 0 
because I‘, > 0. However, when x, > 0, rl can change its sign as the forcing intensity 
increases. At F = 0 (U = 1) it follows from (20) that TI = (1 -xc)/(l +x,) > 0 
because Ix,J < 1. Therefore, there is no swirl dynamo for a weak forcing. On the 
other hand, on approaching the collapse, the integral in (20) tends to infinity and rl 
is negative. As rl is a continuous function of the forcing intensity, there must be a 
specific value of the intensity at which the swirling regimes bifurcate. We show below 
that this bifurcation does occur for both the SSF and BFF cases. 

3. Surface forcing 
3.1. Reformulation of the problem for the two-medium case 

Now we formulate the problem to consider both a liquid flow inside the meniscus, 
x, < x < 1, and a gas flow outside the meniscus, - 1 < x < x,. Also, we consider the 
one-medium case when the influence of the gas flow on the liquid motion is neglected. 
The one-medium problem is a particular case of the two-medium one in the limit 
pJpl + 0 where subscripts g and I denote gas and liquid. We consider the interface 
fixed at x = x, and supported by surface tension in accordance with Taylor’s theory. 
Deformation of this surface due to the normal stresses induced by the motion is 
neglected. At x = x,, the shear stress T ~ ,  is different for liquid and gas at the surface 
because the external tangential forcing is applied to the liquid surface in the radial 
direction. However, T,+ must be continuous across the surface and so must u,, v4, and 
v8 (the latter is zero at x = x, from both sides). In such a formulation, a swirl-free flow 
inside the meniscus is totally independent of an ambient gas flow, but the gas flow is 
induced by the liquid one owing to the continuity of u,. The gas flow is also influenced 



178 V. Shtern and A ,  Barrero 

by the emitted jet and drops, and taking this into account greatly complicates the 
problem. However, electrosprays are rather dilute in many cases so, considering our 
approach as a first step in simplifying the real situation, we neglect this effect here. 

To analyse the problem, it is convenient to apply representation (1) using liquid 
viscosity v1 and density pi in the meniscus, and gas viscosity vg and density pg outside. 
Then the continuity requirements for T~~ and the velocity components take the form 

In absence of body forces,f, =fe = 0, (12) can be integrated once (Sozou 1992) 

(1-x2)F"+2xF'-2F= I". (22) 
The integration constant is zero due to (6) and (14) and similar conditions at x = - 1. 

Thus, we have to integrate the system (3), (13) and (22) in both the regions 
- 1 < x < x, and x, < x < 1 satisfying (21), 

+=rg=O 9 at x = - 1 ,  +l=rz=O at x = l ,  (23) 

and condition (10) for the liquid flow. 

3.2. Collapse 
Since the existence of collapse is a sufficient condition for the swirl dynamo to occur 
in cones with x, > 0, it is useful to show first how the forcing intensity, at which the 
collapse occurs, depends on the cone angle. In the case of the surface forcing, this 
relation can be explicitly expressed in terms of elementary functions. Without swirl and 
body forces, the right-hand side of (12) is zero, and F = C ( l  - x ) ~  in accordance with 
(14). Then (13) has an analytical solution (Yatseev 1950; Squire 1952). In the region 
x, 6 x 6 1, this solution satisfying (7) is 

+ =  2 h ( l - x ) [ ( l + x ) " - ( 1 + x , ) " ] / [ a - ( 1 + ~ ) ~ ]  for C <  1/2, (24a) 

+ = (1-x)/{2/1n[(1+x)/(l+xc>l-1> for C = 1/2, (24b) 
+ = 2C(1 -x)/{wcot(:wln[(l +x)/(l +x,)])- l} for C > 1/2. (24c) 

Here h = (1 +n)/2, a = (1 +x,)"(l +n)/(l -TI),  w = in, y1 = (1 -2C)1/2; and constant C 
relates to the Reynolds numbers : 

(25) 

where Re = -rv,,/v = $'(x,) is the Reynolds number based on the radial velocity at 
the cone surface v,,, and is a more convenient characteristic of the flow. (If subscripts 
g and 1 are not used, this means that quantities are based on liquid characteristics.) 
Again, the minus sign is used to make Re positive when u,, is negative. For the gas flow 
in region - 1 < x < x,, the solution follows from (24) after the transformation : x + - x 
and x, --f -xc. 

The collapse occurs when the denominators in (24) become zero at x = 1. When 
C = 1/2, it follows from (24b) and (25) that at x, = 2/e2- 1 = x, z -0.73, 

Re = C( 1 - xJ/( 1 + x,) and Re, = 2Re [(1+ xJ/( 1 - x , ) ] ~ ' ~ ,  

Re* = (e2- 1)/2 z 3.19 and Re,* = (e2- l)l", 
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FIGURE 4. The collapse values of Ref and Re* versus the cone angle. 

where superscript asterisk marks values corresponding to the collapse. For x, > xl, we 
have to find a root w = w* of the equation 

tan(bw) = w ,  b = +ln[2/(1 +x,)]. 

We need a positive w* that is less than x/(2b). Since b < 1 at x, > x,, it is evident that 
such a root exists at any x, in the interval x ,  < x, < 1. Then using C* = (w*'+ 1)/2 in 
(25) we find Re* and Re,*. For x, < x,, one needs to find a positive root y = y* of the 
equation 

exP(-2by) = (1 -Y)m +Y). 

Since b > 1 at x, < x,, it is evident that such a root exists; it is unique, and y* < 1. 
Then applying C* = (1 -y*')/2 in (22) we find Re* and Re:. Figure 4 shows Re*(x,) 
and Re,*(x,) obtained numerically. Thus, the collapse occurs at finite values of Re and 
Re, in the whole range - 1 < x, < 1. 

As has been shown in $2 this proves the existence of the swirl dynamo for the one- 
medium SSF and 0 < x, < 1. (See another version of the proof in Shtern et al. 1994.) 
The proof for the BFF case is given in $4.6.1. 

3.3.  Linear problem 
To solve the linear problem of the swirl dynamo, one could use solution (24) for 
the meridional liquid flow and the corresponding solution for the gas flow. However, 
it is better to integrate (3), (13), and (22) from x = x, in both directions, using (21), 
T,(x,) = 1, and a tentative value of r;(x,) .  Then we choose r ; (x , )  to satisfy 
rg(- 1) = 0, and look for Re, = Re,. (or Re = Re,) to satisfy r,(l) = 0. 
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FIGURE 5. The critical Reynolds numbers (based on the liquid viscosity) of the swirl bifurcation (curves 
l), collapse of the non-swirling solution in liquid (curve 2) and gas (curves 3) in the two-medium 
problem with water-CO, (prime), heptane-air (double prime), and infinite liquid/gas density ratio 
(curve 1). 

In our calculations we use the reference temperature 20°C for densities and 
viscosities and consider water (vz = 1.01 x m2 s-l, pz = 997 kg m-3) and heptane 
(vl = 0.611 x low6 m2 s-', pl = 684 kg m-3) as the liquids, and CO, (vff = 
15 x m2 s-l, pg = 1.84 kg m-3) and air (vg = 14.8 x lov6 m2 s-l, pff = 1.21 kg m-3) 
as the gases. 

Figure 5 shows the results of the calculations for this linear problem of the swirl 
dynamo. Curve 1 shows Re,(x,) for the swirl bifurcation in the one-medium case. 
Curve 1 is the limit (as r, ,+m) for the similar curve in the two-medium problem. The 
latter case correspond to curves 1' (water-CO,, ru = 0.067, rp, = 3.84) and 1" 
(heptane-air, r,  = 0.0413, rpy = 0.964). Curve 2 shows Re*(x,) for the collapse in the 
liquid flow. The collapse values of Re*(x,) for gas flows are shown by curves 3' (CO,) 
and 3" (air) with Re* based on water (3') and heptane (3") viscosities. At r,  = 1, curves 
3' and 3" would just be reflections of the curve for Re* in figure 4 with respect to the 
line x, = 0. As r, decreases, curves 3' and 3" shift up in figure 5. Bifurcation curves 1' 
and 1" terminate when they meet curve 2 at small x, ( z  0.01 and 0.02 respectively) and 
curves 3' and 3" at x, close to 1 (0.991 and 0.989 respectively). 

Although the range of the cone angle where the swirl bifurcation occurs decreases 
slightly in the two-medium cases in comparison with that for the one-medium problem, 
this range stays wide enough to cover the experimental interval, 32" < 8, < 46". 
(Although Taylor predicted 8, = 49.3" for the iso-potential surface of highly 
conducting liquids at rest, the experimental range for electrosprays is different due to 
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FIGURE 6. Circulation at the interface r, versus the Reynolds number Re for the primary (curve 1) 
and secondary (curve 2) solutions. Re,, Re,,, Re:, and Re,, correspond to the swirl bifurcation, flow 
separation in liquid, collapse of the liquid flow, and flow separation in gas, respectively. The sketches 
illustrate flow patterns of the meridional motion in regions I (without swirl), I, (with swirl but without 
separation), I1 (after separation in liquid), and 111 (after separation in gas). Water-CO,, 0, = 45". 

emission of charges (Fernandez de la Mora 1992; Pantano, Gaiian & Barrero 1994)) 
Inside the experimental range, the difference in Re, is not too large for the two- and 
one-medium cases. 

3.4. Nonlinear problem 
To solve the nonlinear problem of the swirl dynamo, we apply the same algorithm as 
in $ 3 . 3  but instead of the use of normalization condition, r,(x,) = 1, we consider r,(x,) 
as a free parameter. Since nonlinear results coincide with linear one as T,(x,)  + 0, we 
start from a small value of r,(x,) and increase it gradually using the previous results 
as initial guesses for the parameters in the Newton shooting procedure. 

Figures 6 8  summarize the calculation results for the water-CO, case. Figure 6 
shows at 8, = 45" the dependence of r, = T(x,) on Re (curve 2). Line 1 (on the 
abscissa) corresponds to the primary solution, r, = 0. It is shown by a dashed line for 
Re > Re, = 6.92 because we expect it to become unstable after bifurcation. Line 1 
terminates at Re = Re* = 3 1.6 where the collapse occurs. As the abscissa in figure 6 is 
the line of symmetry, one has the supercritical pitchfork bifurcation of the secondary 
regime. We have found that the bifurcation is supercritical for all parameter values 
considered. 

Figure 7 shows a general regime map for all values of the interface angle 8,. As 
expected, the self-swirling regimes exist only in the range 0 < x, < 1. Figure 7 (b) covers 
this range, and figures 7 (a) and 7 (c) show the blown-up vicinities of x, = 0 and x, = 1, 
respectively. Region I (at small Re) corresponds to the swirl-free regimes (for a 
typical flow pattern see the sketch in region I of figure 6). At curve B, bifurcation of 
swirl occurs but the pattern of the meridional flow in region I, remains the same as in 
region I. Curve B terminates at the intersection points with curves C, and C,. The latter 
curves relate to the collapse in the liquid and gas flows, respectively : the lower branches 
correspond to collapse in the swirl-free regimes, and the upper branches correspond to 
the collapse in the secondary (self-swirling) regimes. 
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FIGURE 7. The critical Reynolds numbers (based on the water viscosity) versus the meniscus angle in 
the water-CO, case. The curves correspond to the swirl bifurcation (B),  collapse in liquid (C,) and 
gas (C,) in the primary (lower branches) and secondary (upper branches) regimes, separation in liquid 
(S,) and gas (S,). (a) and (c) The blown-up vicinities of x, = 0 and 1 in (b). For sketches of flow 
patterns in regions I, I,, 11, and I11 see figure 6. 
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FIGURE 8. Axial velocity Re, and separation angles 19, and S, versus Re for the same problem as figure 
6. Subscripts marks the values for liquid (I) and gas (g) and Re: corresponds to the collapse of non- 
swirling gas flow; for the other symbols see figure 6. 

Re 

The self-generated swirl decreases the axial velocity in comparison with the primary 
non-swirling regime, as figure 8 shows at Bc = 45". Defining Re, = w,.,/v, where v,, is 
the axial velocity, curves 1, and 1, correspond to Re, for the primary regimes in the 
liquid and gas respectively. The vertical lines, Re = Re: and Re = Re,*, are asymptotes 
related to the collapse of the swirl-free flows of the liquid and gas, respectively. For the 
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secondary regimes, the axial velocity of the gas (curve 2,) is less than that for the 
primary regime, but continues to increase with Re in some range after the swirl 
bifurcation. In contrast, the axial velocity of the liquid (curve 2,) begins to decrease 
immediately after the bifurcation. This means that the meridional motion near the axis 
uses its energy for swirl generation. In turn, swirl makes the near-axis jet wider and 
weaker owing to the centrifugal force action. As swirl increases, this action leads to 
another qualitative change in the flow pattern. 

3.5. Flow separation 
The axial velocity (i.e. Re,) changes its sign at Re = Re,, = 14.3, which corresponds to 
the crossing of line Re, = 0 by curve 2, in figure 8. This means that there is internal flow 
separation, i.e. near the axis of the liquid meniscus a new circulation cell of angle 0, 
appears. Curve 0, in figure 8 shows the dependence of the separation angle on Re, and 
the sketch in region I1 of figure 6 illustrates a typical flow pattern. As Re increases 
beyond 59 in figure 8, the axial velocity of the gas also begins to decrease and changes 
its sign at Re = Re,, = 124. This means that internal separation also occurs in the gas 
flow and a new circulation cell appears within the interval 0, c 0 < n. Curve Bq in 
figure 8 shows the dependence of the separation angle in the gas flow on Re, and the 
sketch in region I11 of figure 6 illustrates a typical flow pattern. Thus, the meridional 
motion has a four-cell pattern at high Re. 

In figure 7 curves S, and S, show the dependence of Res, and Re,, on x,. Figure 7 (c)  
shows that flow separation occurs first in the gas as Re increases. However, this is valid 
only for very sharp liquid menisci outside the range of the cone angles observed in 
electrosprays. As x, tends to 0 and 1, R e + a  along S, and S,, and these curves 
approach asymptotically the upper branches of C, (as x, + 0) and C, (as x, -f 1). For 
large Re, the solution can be obtained analytically by applying an asymptotic 
technique. 

3.6. Asymptotic study 

Studying the flow features at high Re, we use a technique similar to that in Paul1 & 
Pillow (1985) for x, = 1, in Shtern & Hussain (1993) for x, = 0 and in Shtern & 
Hussain (1995) for arbitrary x,. Here the difference is in the boundary conditions at 
x = x, and that we study the two-medium case as well. First, we consider the case when 
I',, xSl = cos (0,) and xSg = cos (0,) are given and independent. Then we find a relation 
between them induced by the continuity requirement at x = x, yielding the final 
formulae for the asymptotic relations. We suppose, as is usual, that as Re +co the flow 
contains regions of inviscid behaviour and thin layers where the role of viscosity cannot 
be ignored. Our asymptotic analysis consists of finding analytical solutions for the 
inviscid regions, analytical or numerical solutions for viscous layers, and matching the 
solutions at the region boundaries. 

3.6.1. Inviscid regions 
Referring readers to Shtern & Hussain (1993, 1995) for details of the asymptotic 

technique and omitting calculations we show just the results. The circulation is a step 
function of x: 

f, = 0 at - 1 < x < x,, (region l), 
f, = r y r ,  at x,, < x < x, (region 2), 
r, = I', at x, < x < x,, (region 3), 
r, = 0 at x,, < x < 1 (region 4). 
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The analytical solution for the stream function is 

$, = $s,(l+x)/(l +x,,>, (region l), 
llrg = - $sgKx, - x) [(x, - x,,) (1 + XI + (x - xSg) (1 + x,>I>~~~/c, , ,  (region 2), 
$1  = $sd(x- x,) KxSz - x,) (1 - x) + (xSz - x> (1 - (region 31, 
$1  = - @szU - x)/(l- Xszh (region 4), 

where 
cSg = (x, - xSg) (1 + x,,)’/~, $,, = r, rc csg( 1 + xC)-l ( 1  - x,,)-~/~, 
c,i = (x,,- x,) (1 - xsz)l’2, = csz r,( 1 - xc)-l (1 + X , p ?  

o, = - vr-2r’(x), wo = 0, w4 = - vr-2 $”(x), 
one can see that the inviscid flow is potential in regions 1 and 4 but vortical in regions 
2 and 3. 

As the vorticity components for the conical flows are 

3.6.2. Viscous jets inside the media 

There are jumps in the above inviscid solutions for the circulation and stream 
function at x = x,, and x = xsz. This means that there are thin layers where viscous 
effects cannot be ignored. To study these boundary layers we ‘blow up’ the vicinities 
of x = xsg and x = xSz introducing the inner variables 

and 
and derive boundary-layer equations allowing r, +a. The analytical solutions of these 
equations are 

t g  = kg(x - x,,)/[2(1 - x:,>1 & = $s,(x - x,,)/[2(1 -x:,>1, 

llr, = - $sg tanh &-,? $z = - $sz tanh 51, 
rg = rv r,( 1 + tanh E1,)/2, rZ = TC( 1 - tanh &)/2. 

Since the circulation is a step function in the inviscid limit, the above boundary-layer 
solution provides a uniform approximation for the circulation in the whole interval 
- 1 d x < 1. The boundary-layer solutions for the stream function are valid only in 
the vicinities of x = x,, and x = xSz and match the inviscid solutions as tg and 6, tends 
to +a. 

3.6.3. Near-interface viscous layers 
Near the interface, we apply the inner variables 

7 = 4X-XXe), $ = 4 1  -4 W(7), 
where scale a is different for the gas and liquid flows: 

a, = - gf[(x, - x,,) (1 - x:) (1 - x,) (1 + xsg)]-1’3, 
a2 = +:t’3“<xs, - x,) (1 - x:) (1 + X,) (1 - xsJ-”3. 

However the resulting boundary-layer equation is universal for both media : 

d W/dT = W2/2 -T +7,, 

where 
We expect that vC is a finite non-zero number that must be found to match the 

boundary-layer and outer solutions. The corresponding boundary-layer solution was 
found in Goldshtik & Shtern (1990) with 7, = 1.28. 

T c  = $;(Xc)/b;(1 -.:>I = $XXC)/[4(1 -.:>I. 
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The continuity requirements at x = x, yield the relations 

rp @sl( 1 - x,"~)-' sech2 tlC + @sg( 1 - x:,)-' sech2 tgc = 8(rp - 1) xc( 1 - x,")-' 

(xs1 - xc)/(xc - xsg) = rt'"(1 - x,) (1 + d" + 4 (1 - x,,)l>, 

where rp = rp,,/r,,, tlC = &(x,), and t,, = t,(x,). The expression inside the curly 
brackets in (26) tends to 1 as f, +co because xsl + x, and xsg --f x,. However, the latter 
limit is reached rather slowly and we use (26) below in comparing our asymptotic and 
numerical results. 

Now we have the necessary conditions to find all the parameters at given f,, xc, and 
the medium characteristics. 

3.6.4. Comparison of the asymptotic and numerical results 
The asymptotic and numerical solutions have been calculated for the water-CO, 

case at x, = 0.707 and r, = 460. Figure 9 shows the numerical results (solid curves) 
and the inviscid solution (dashed lines) for the stream function and circulation. The 
positions of xsg and xsl as well as the circulation distributions coincide within the 
accuracy of the drawing for the numerical and asymptotic data. A similar merging of 
the results for the stream function occurs when we use the products of the boundary- 
layer and inviscid solutions. This agreement verifies both the asymptotic and numerical 
results. 

We mentioned that xsl+x, and xSg+x, as r,+co and therefore the viscous jets 
positioned inside the media approach the interface. However, the jets and the near- 
surface boundary layer do not merge. There are regions of the inviscid vortical flows 
in between, although the thickness of these regions tends to zero as r,+Oo. The reason 
for this is that the thickness of the boundary layers tends to zero faster than that of the 
inviscid regions. 
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FIGURE 10. Distributions of stream functions (solid curves) and circulation (dashed curves) at r, = 
200 (curve l), 800 (curve 2), and 3200 (curve 3). Line 4 shows the potential limit of $(x) as rc+oo, 
line S shows the slope of T(x)/rc at x = x, = 0.707. 

Figure 10 illustrates the development of the flow structure (as r, increases) for the 
one-medium case with the included angle of the meniscus 8, = 45". Distributions of the 
stream function (solid curves) and circulation (dashed curves) are shown for F, = 200, 
800, and 3200 (Re = 370, 1869, and 8677). Line S shows the slope of circulation on the 
cone surface according to (1 1). One can see that the separation position x = x, (zero 
of $) moves to the surface as Re increases. In other words, the inner cell becomes wider 
and the angular thickness of the outer cell tends to zero as Re+co. The swirl is 
concentrated near the surface and is absent outside a thin near-surface layer. Inside the 
inner cell, the stream function tends to the linear distribution $,(x) = 
@,,(l -x)/(l -x,), @.pc = $,(xC), corresponding to a potential flow (see above) and 
shown by line 4 in figure 10. The different signs of $'(x,) and yY(x,) correspond to the 
oppositely directed viscous jets near x = x, (inflow) and x = x, (outflow). 

Thus, the asymptotic analysis together with the numerical results allow us to cover 
the whole range of Re values - from zero to infinity. Both in the one- and two-medium 
problem, bifurcation of the self-swirling regimes and flow separations occur as the 
intensity of swirl becomes sufficiently large. Asymptotically, the rotation is present only 
in a thin recirculation cells near the interface, where strong in- and outflows also 
develop. This asymptotical flow structure differs drastically from that in the case of 
body forcing that we study below. 

4. Body forcing 
4.1. Modijication of the problem 

Now we consider the case when the meridional motion inside a liquid cone is driven 
by body electric forces. Following Sozou (1971) and Sozou & Pickering (1976) we 
neglect the influence of the flow on the electric field. This is valid if the Batchelor 
number /3 (that is the kinematic/magnetic viscosity ratio) is significantly less than 1. 
This is the case for many applications, e.g. for mercury /3 = lo-' (Bojarevics et al. 
1989). 
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FIGURE 11. Schematic of the radial distribution of body force I$ induced by the vector product of 
the electric current densityj, and magnetic induction B$ (see also figure 2b). 

Figure 1 1  shows a schematic of the forcing. Electric current J diverges radially from 
the cone apex to infinity with the density 

j ,  = J/[2nr2(1 -xc)] ,  

and generates the azimuthal magnetic field B$ which, from V x B = 4nj, is given by 

B+ = 2J[r(l  -x,)]-'[(I -x ) / ( I  +x)]"'. 

Since the electromagnetic force F = j x B, this force acts along meridians, and 

4 = -~2[nr3(1 -xc)2]]-q(i  - x ) / ( i  + X ) p z .  (27) 

It is convenient to introduce the dimensionless total current I = J(npv'/2)-'/'. ( I  = 
P I 2 ,  where K is the parameter used by Sozou 1971 .) Then it follows from ( 1 )  and (27) 
that 

(28) 

Substituting (28) in (12) and taking into account thatf, 3 0, we have 

(29) 

Thus, now the governing equations are ( 3 ) ,  (13)  and (29). The boundary conditions at 
the axis continue to be (4H6), leading to (14). At the cone surface we apply (7) and 

f* = --;P(l -x,)-"(l - x ) / ( l  +x)]"" 

( 1  -X2)F"' = 21T'+I2(1 -x ) (1  -x,)-2. 

V Y X J  = 0, (30) 

which corresponds to zero radial shear stresses and follows from (10) when Re, = 0. 
Studying the collapse problem (which is closely related to the swirl dynamo, see $2.2) 

we use instead of ( 1 1 )  the condition 

m,) = r,, ( 3 1 )  

where r, is considered as a given value that characterizes an external forcing of rational 
motion. The collapse of the flow in a half-space with a free surface at x = 0 and zero 
circulation r, was studied by Sozou & Pickering (1976). We generalize this problem 
here for arbitrary values of x,  and r,. 
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FIGURE 12. Regime map for a flow in a half-space driven by the body forces induced by current Z 
(dimensionless) and circulation r, applied at the surface. The curves correspond to no meridional 
motion (R), collapse (C and its asymptote A J ,  and the first separation (SJ. There is no regular 
solution in region I, and the sketches show flow patterns in regions 11-V. 

The main advantage of using (29) is that this equation can be integrated analytically 
in important particular cases. Note that (7), (15), and (30) yield 

F’(x,) = 0, (32) 

which, together with (14), means that the boundary conditions for F admit a solution 
F = 0. A solution of (29) has to be non-zero, therefore, owing to the right-hand side 
terms. Since (29) is linear with respect to F, we can use the decomposition 

F = r: F,+Z2F,, (33) 

where r: F, and I 2  FJ are contributions from the first and second terms on the right- 
hand side of (29), respectively. 

The explicit form of F,, which follows from integration of (29) at r = 0 and 1’ = 1 
with conditions (14) and (32), is 

Also, the integral form of F,, which follows from integrating (29) three times and 
applying conditions (14) and (32) at I2 = 0, is 

(1 -x)(2x,-x- 1) l + x  dt 
F, = - i (y2-  1)-+(1 -x)Z 

4(1-xc) 1-x 
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FIGURE 13. As figure 12 but for larger Z and r,. Line A is an asymptote for S,, curves S,-S, 
correspond to subsequent flow separations, and curve C, corresponds to the collapse in the two-cell 
flow. In regions VII, IX, and XI, the flow is 3-, 4-, and 5-cellular, respectively. 

4.2. Collapse in the one-cellJEow 

When collapse occurs in the one-cell flow, the circulation becomes constant, i.e. 
r = rc in x, d x < 1. Substitution of y = 1 in (35) makes all terms on the right-hand 
size zero except for the first one. Therefore, in the collapse case, it follows that 

E;; = F,* = -a(l -x)(l+x-2~,)/(1 -x,), (36) 

F =  F* = r :F,*+Z2FJ,  (37) 
and the problem is reduced to integration of (13) with 

and the condition $(1) = 4 (for the latter see Goldshtik & Shtern 1989). It follows from 
(15), (36) and (37) that f(1) = 2-r,2/8. In our numerical calculations, we perform the 
integration from x = 1 to x = x, and choose I =  I* at given r, to satisfy (7). 

For large r,, the asymptotic collapse relation between I* and r, can be found 
analytically. In this case F = -i$z becomes valid for the inviscid solution, and to 
satisfy (7) we need F(x,) = 0. Then it follows, from substitution of x = x, into (36) and 
(37), that 

I* = ;I,,[( 1 - xc)/FJ(xc)]? 
The collapse relation I*(r,) calculated numerically at x, = 0 is shown by curve C in 

figures 12 and 13. The asymptote (38), that is reduced to I* = l-',(3-41n2)-1'2 z 2.1rC 
at x, = 0, is shown by line A ,  in figure 12 and coincides within the accuracy of the 
drawing with curve C in figure 13 for r, > 100. 

Thus, circulation applied at the surface increases the critical value of the electric 
current corresponding to the collapse. The reason is that the circulation generates 
negative F, (see e.g. (36)), i.e. induces meridional motion diverging from the symmetry 
axis contrary to the current action that induces conuerging-to-axis flow. In particular, 
the circulation reduces the axial velocity, and a larger value of Z is needed for the 
collapse. In the next section we show how some specially chosen T, at given I can stop 
the meridional motion. 
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4.3. Suppression of the meridional motion by swirl 

This effect can be useful in some applications, such as electroslag welding (Bojarevics 
et al. 1989). A meridional motion in the latter leads to non-uniformity of crystal 
growth, so it is useful to suppress the motion. As further motivation, the self-rotation 
is closely related to the suppression effect, as shown below. 

Suppose that meridional motion is absent, i.e. 11. = 0. Then (3), (6), and (31) yield 

r = r,(i -xc), (39) 
and substituting (39) into (29) gives 

(1-xZ)F" = (Z2-22f~)(1-x)(1-Xx,)-? 

r, = rR = z l d 2  
Therefore at 

the right-hand side of (40) becomes zero, which on using (14) and (32) leads to I; = 0, 
and hence, with use of (7) and (13), that 11. = 0. Note that condition (41) is valid for 
any given Z and does not depend on the cone angle. The relation is presented by ray 
R in figures 12 and 13. In a more general case, the opposite actions of the current and 
circulation do not totally stop the meridional motion but lead to a cascade of flow 
separations and multi-cell flow patterns. 

4.4. Separation 
4.4.1. The jirst separation 

Figure 12 shows a map of flow regimes at moderate values of Z and r,. The 
meridional motion does not depend on the circulation sign and the current direction, 
so that the abscissa, I', = 0, and the ordinate, Z = 0, are symmetry lines. Besides curve 
C and lines R and A ,  which have been mentioned above, there is curve S,  on which the 
axial velocity changes its sign. The parameter plane in figure 12 is subdivided into 
regions I-V separated by C, S,  and R.  There is no regular solution of the problem in 
region I positioned below the collapse curve C. The sketches inside the other regions 
show typical flow patterns for the meridional motion. 

Passing through R, the meridional motion changes its direction, stopping totally at 
R. When one crosses S,  along the ray r, = aZ as Z increases, the flow becomes two- 
cellular, and angle 8, of the separating cone starts from zero at s,, monotonically 
grows, and tends to 90" as Z+m. 

In the vicinity of R, the meridional motion is slow and the problem can be reduced 
to a linear one. First, note that (29) can be integrated once to give 

(l-x2)F"+2xF'-2I;= rz-+zz(l-x)z/(l -x,)2. (42) 
In the vicinity of R, the circulation can be represented by a superposition of the basic 
solution r, and disturbance r,: 

r= r b - k r d ,  r b  = rR(l-x)/(l-xc), 6 rb. (43) 
Substituting (43) in (42), and neglecting nonlinear terms with respect to the disturbance, 
we have with the help of (3) and (13) 

(44) 

We integrate (44) subject to the same boundary conditions (4)-(7) and (30), but instead 
of (31) use the normalization rd(x,) = - 1. Thus a one-parameter family of solutions 

I (i-x2)r; = y d r ; ,  (i-x2)11.;+2x1~'~ =4,  
(1 - x2) I;; + 2x~;  - 2 4  = 217, r,. 
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FIGURE 14. Angles of cones separating the flow cells versus current I along ray R in figure 13. 
The cone number (counting from the surface) is shown near the corresponding curve. 

FIGURE 15. Dependence of axial velocity Re, versus current I along ray R in figure 13. 
Zeros of Re,(Z) correspond to the subsequent flow separations. 

is obtained, depending on I. At small I ,  the solution corresponds to a one-cell regime, 
but when I becomes larger than Is, = 28.9 (this value relates to the intersection point 
of R and S,  in figure 12), the second cell appears near the axis. Despite the fact that 
the meridional motion stops at R, angle Bsl of the first separating cone has a limiting 
value differing from 0 and 90" as one approaches R for I > Is,. Curve 1 in figure 14 
shows the quantity xsl(Z) and figure 15 shows Rea(I) (Re, = - $'( 1) is a dimensionless 
axial velocity) along ray R in figures 12 and 13. As the condition r d ( x c )  = - 1 
corresponds to points positioned a little bit below ray R, the flow is converging to the 
axis at small I ,  and Re, is positive. Then Re, changes its sign at I = Isl, which 
corresponds to the origin of curve 1 at I = Is, in figure 14. The relation between Is, and 
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r, for curve S,  in figures 12 and 13, which is not close to R,  has been obtained 
numerically (see below), but the asymptotes of S,  can be found analytically. 

4.4.2. Asymptotic study of the jirst separation 
Curve S, separating one- and two-cell regimes in figures 12 and 13 has two branches, 

and we will now find asymptotes for both branches as Z+co. The lower branch 
corresponds to the converging-to-axis meridional flow. As Z increases, the circulation 
tends to r, everywhere except in the vicinity of the axis where a boundary layer 
develops, and the inviscid limit for the stream function is the same as in the collapse 
case (see $4.2). Therefore, as Z+co, the leading term of the asymptotic expansion for 
the lower branch coincides with that for the collapse, i.e. (38). One can see in figure 13 
that the lower branch of S, merges with curve C within the accuracy of the drawing at 
Z > 100. Nevertheless, the flows are significantly different for S, and C in the near-axis 
boundary layer. The boundary layer for the near-collapse flows has been studied by 
Goldshtik & Shtern (1990) and their results are also valid for this problem. In this 
boundary-layer approach, the equations for the meridional motion decouple from 
those for the swirl and have a solution corresponding to the round Schlichting jet. 

However, these equations stay coupled when the separation is considered, and for 
this case the boundary-layer problem is reduced to that formulated by Long (1961). 
Introducing the inner independent variable q = r,2(1 -x), using y = T/T,, substituting 
these variables in equations (3), (13), (42), and allowing r,+m, we get 

where the prime means differentiation with respect to 7. The transformation, q = y2 ,  
F‘ = 4y3s0, reduces (45) to equations (2.7t(2.9) in (Long 1961), but system (45) seems 
to be simpler for analysis and numerical integration. The conditions $(O) = y(0) = 0 
and (45) yield F(0) = F’(0) = 0; but neither f ( O ) , P ” ( O ) ,  nor y’(O), can be found 
from (45). F”(0) and y’(0) must be chosen to satisfy the conditions at infinity: y-f 1 
and F‘+-+ as q+co. In general v(0) stays a free parameter, but considering the 
separation case we use here $’(O) = 0. 

The numerical results are in agreement with those obtained by Long (1961) and 
Burggraf & Foster (1977) at the specific value of Long’s parameter M corresponding 
to zero axial velocity. Note that although Long’s boundary-layer approach is quite 
valid for the near-axis velocity field, parameter M has no sense here. (See Shtern & 
Hussain 1993, 1995 on the limitations of using M as a characteristic of Long’s 
boundary layer.) 

The upper branch of curve S,  in figures 12 and 13 corresponds to the diverging-from- 
axis meridional flow. Owing to this convection, the circulation tends to zero as Z+co 
outside the near-surface boundary layer where the circulation rises to r,. Since r+ 0 
in the inviscid region, we can use (33) with F, = -A(1 - x ) ~  (which follows from (29) 
and (14) at Z = 0 and r = 0), where A must be found to match the boundary-layer 
solution. One cannot expect that F(x,) = 0 in general, and therefore F = -a$.” yields 
for the inviscid outer solution that $(x,) = $, + 0. To satisfy (7) the stream function 
must vary from $, to zero inside the near-surface boundary layer. F is a continuous 
function in the inviscid limit, so inside the boundary layer one can use F = - $72 in 
(13). Then, introducing the inner variables 

qv = $-;$’-iF, qy” = -i$y’, 1;1p = F’+1 2Y 2 , (45) 

$ = - $, W(1;I), 7 = &--,), a = f$,/(1 -.%I, (46) 

W’ = 1 - W 2 ,  W = tanhv, (47) 

and allowing $, + co , we get from (1 3) 
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where the prime denotes differentiation with respect 7, and to find the integration 
constant the condition W(0) = 0 has been used. Applying (46) in (3) and allowing 
$,+a we get 

f "  = -2Wf' .  
Substituting for W from (47) and integrating, with the use of conditions f ( 0 )  = r, and 
f ( c 0 )  = 0, yields 

f = f , ( l  -tanhy). (48) 
To find how F i  (in decomposition (33)) varies across the boundary layer we apply 

(46) and (48) in (42) at I = 0, and in the limit $, -too obtain 
01'1;: = (1 - tanh 7)'. 

a' F> = 2 In {2/[ 1 + exp (- 27)]} - tanh 7. 

(49) 

(50) 
In particular, F x c o )  = (2 In 2 - l)/a2. The matching condition for the inner and outer 
expansions is (dF,ldx) (x,) = a(dFr/d7) (00) (since d/dx = a d/dy), which yields 
(dFr/dx) (xi) = (2 In 2 - l ) /a .  Then, with the help of I$- = - A(l- x ) ~  and (46), we 
obtain 

(51) 
Substituting (51) and (34) in (33), and using x = x, and F(x,) = -$:/2, we get the 
relation 

(52) 
and this defines $c at given I and f , .  One can consider rc and $, as given parameters 
as well, in which case (52) defines I ,  and the analytical asymptotic solution for the one- 
cell flow as f , + m  is determined by (46)-(48), (33), (34), (51), and F = -@2/2. 

Since in the inviscid region $ = -(-2F)-'/', to fulfil the separation condition, 
$'(l) = 0, we need F"(1) = 0. This gives, with the help of (33) and (51), the result 

Integrating (49) with the condition Fk(0)  = 0 we find 

Fr = - (2 In 2 - 1) (1 + x,) (1 -x)'/$,,. 

Iz&(xc) = r: (2 In 2 - 1) (1 + xc) (1 - x,)~/$, - $:/2, 

Z'F:( 1) = 2 f  :(2 In 2 - 1) (1 + x,)/$,. (53) 
It follows from (34) that 

and substitution of @c from (53) and (54) in (52) yields the final formula 

f ,  = 13" 4(XC), (55) 
where Ej(x,) = [( 1 - x,)' G2(x,) - Z~(X, ) ] ' /~  {c2(xC)/[(4 In 2 - 2) (1 + x,)]}'/~. 

At x, = 0 the relation (55) becomes r, = 0.418 13", which is shown by line A in 
figure 13. Since the upper branch of S,  clearly approaches A as rC+c0, this means that 
our asymptotic and numeric analyses are matched for large r,. Figure 16 supports this 
claim for the distributions of the stream function (curves 1, l', and 1") and circulation 
(curve 2) also. The numerical results (for f ,  = lo3 at the upper branch of S,  in figure 
13) are shown by the solid curves. The numerical results for the circulation differ from 
(48) in the third decimal digit at worst. The numerical results for the stream function 
coincide within the same accuracy with (46) and (47) (curve 1") at x < 0.03 and with 
the inviscid solution (curve 1') at x >0.08. The combination of these boundary-layer 
and outer solutions that serves as a uniformly valid approximation merges with the 
numerical solution within the accuracy of the drawing. 
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FIGURE 16. Profiles of stream function (curve 1) and circulation (curve 2) for the upper branch of S, 
in figure 13 at r, = lo3. The dashed curves show asymptotic solutions for $ in the near-surface 
boundary layer (1”) and the outer inviscid region (1’). The product of (1’) and (1”) coincides with 
curve 1 within the accuracy of the drawing. 

Note that the asymptotes for the upper, ( 5 9 ,  and lower, (38), branches of S,  
correspond to different power-law relations between r, and I. This means that at a 
given circulation re % 1, one needs a current I N r;l3 for appearance of the converging- 
flow cell near the axis but a current I - T, to make the flow converge to the axis in the 
whole region. Inside these limits for I ,  the flow can be multi-cellular, as we will show 
in the next section. 

4.5. Cascade o f f o w  separations 
4.5.1. Linear analysis 

Let us now return to the linear system (44) that describes the flow in the vicinity of 
ray R in figures 12 and 13. The solution becomes oscillating, and the number of roots 
x = xs, where @(xs,) = 0 increases as I grows (we use the following numeration of the 
roots: 0 d k d N,xS = xc, xs, < xs +,, and xs, = 1). Figure 14 shows dependencies 
xs,(I) for k = 1 , .  .. , (the values of ff mark the curves). Also figure 15 shows that the 
axial velocity changes its sign many times as I increases, Each zero I = Is, where 
Re, = 0 in figure 15 is a starting point for the corresponding curve in figure 14. Each 
interval between the adjacent curves at a fixed I in figure 14 corresponds to a separate 
flow cell bounded by stream surfaces @ = 0. It seems from the numerical results that 
the number of cells tends to infinity as I+m. The asymptotic dependence of the cell 
number N on I can be estimated using the high-frequency approximation of (44). For 
this we neglect all terms on the left-hand sides of (44) except the highest derivatives, 
which, together with substitution of T, from (43) and (41), transform (44) to 

(1-x2)T;=-aallfd, (1-x2)Ijid=&, ( 1 + x ) F ; = 2 a T d ,  

where a = Z/[(l -x,)d2]. Here, it is convenient to use 8 instead of x. Then, the above 
system is reduced to 

(56) @; = f ( O )  @d, f ( 0 )  = 2a2 sin O/(l +cos O), 
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where $: is the fifth derivative with respect to 8. Now we ‘freeze’f(O), i.e. neglect its 
variation between the adjacent roots, and look for a solution in the form Cexp(a8), 
expecting la1 9 1. Substitution of this form in (56) gives 

Since the exponent $ is rather small, we can replace 8 by 8, in (57) in our approximate 
estimations, and obtain 

la1 = (sin @,)-,I5. (58) 
We must consider the five complex exponents 

a, = Jal [cos (2nm/5) + i sin (27cm/5)], m = 1,. . . ,5, 
and the appropriate solution, growing with 8 and satisfying (7), is 
where 

$ = Cexp [a,(O-B,)] sin [ai(O-8,)], 

a, = lalcos(27c/5) and ai = lalsin(27c/5). 
(59) 

Note that (59) must be corrected in the vicinity of 8 = 0 to satisfy (4), but since a, tends 
to infinity with I ,  $ becomes exponentially small near 8 = 0 in comparison with its 
characteristic value near 8 = B,, so the correction is not significant. 

Since the number of cells N M aiBC/n, it follows from (58) and (59) that 
N M I2l5 (sin 8c)-1/5 sin (27c/5) 8,/7c. (60) 

Therefore, there is indeed an infinite sequence of flow separation as I+m. Also, it 
follows from this analysis that the curves in figure 14 approach the abscissa as I+m 
with the asymptotic behaviour xs, - 
4.5.2. Nonlinear results 

Outside the vicinity of ray R in figure 13, curves S,-S5 (corresponding to the 
subsequent separations) have been obtained numerically. Like S,, these curves have 
two branches with asymptotes which are parallel to the asymptotes of S,. The reason 
is that the number of stream function roots is fixed along these curves, and each xsk 
(in particular, xsN-,> tends to some limiting value less than 1. Also r(x,,) tends to a 
limiting value less than r,. Therefore, for the near-axis cell, one can apply the 
asymptotic results of 44.4.2 simply through replacing x, by xsN_l and r, by the limiting 
value of r (xsk ) .  For example, xs, tends to 0.59 and 0.64 along the upper and lower 
branches of S,, respectively, as I+m. Figure 17 shows the distributions of stream 
function and circulation at r, = 500 for the upper branch of S,  in figure 13. In contrast 
with figure 16, there are two viscous layers - near the surface and near the axis. In the 
near-surface layer, the circulation drops from r = I-, to r M 3 1, then r stays quasi- 
constant inside the inviscid region, and drops to zero in the near-axis boundary layer. 
Note that there is no viscous layer near the separation cone, x = xs, in figure 17, where 
the flow is directed to the apex. It is typical that the viscous jets develop near x = xs, 
only when the radial velocity is positive at the separating cone. 

4.5.3. Collapse in the two-cell flow 

Since the flow pattern inside the cone xs, < x < 1 is similar to that in the lower 
branch of S,, we have assumed that the collapse can occur in a vicinity of the upper 
branch of S,, and our numerical study confirms this conjecture. Curve C, in figure 13 
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FIGURE 17. Profiles of stream function $ and circulation r for the upper branch of S, in figure 13 
at r, = 500. In the near-surface layer, circulation drops from r, at x = 0 to the line r = 31. 

shows the calculated collapse boundary; there is no regular solution inside the dashed 
region. We also expect that the collapse occurs between the lower branches of S, and 
S,, the upper branches of S, and S,, and so on, i.e. in each case when the flow converges 
to the axis in the near-axis cell. However, based on the results for curve C,, we think 
that values of Z and r, for the next collapse curves are very large, and therefore we need 
to develop an advanced numerical technique to check the latter conjecture. Also since 
the collapse and separation curves merge at large Z (see figure 13), we need to calculate 
one more term in the asymptotic expansion to distinguish between the collapse and 
separation asymptotes. As the basic subject of this paper is the swirl bifurcation, and 
the collapse is just a related auxiliary topic, we postpone the problem of the collapse 
cascade for further study. 

4.6. Self-swirling 
4.6.1. Linear problem 

We have shown in 52.2 that collapse in now-swirling flows is a sufficient condition 
for the swirl dynamo in liquid cones of 8, < 90". The collapse in the BBF that has been 
found numerically may also be predicted analytically. First, we show that 4, given by 
(34), is positive in the interval x, < x < 1. Differentiating (34) once gives 

Since f l ( x )  is a decaying function for x > - 1 ,  it follows that fl(x) < f l ( x , )  and, 
therefore, F> < 0 inside the interval x, < x < 1. Then, from &(l) = 0, it follows that 
c ( x )  > 0 for x < 1 and, moreover, it decays monotonically as x varies from x, to 1.  

Equation (18), together with conditions (19), can be transformed into the integral 
form 
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FIGURE 18. Dependence on the cone angle of the values of current Z corresponding to the swirl 
bifurcation (B),  collapse of the non-swirling solution (C), and subsequent flow separations (S,-S,) for 
the BFF in a meniscus with a shear-free surface. 

Let xp be the first root of U(x) as x increases from x,. Suppose that xp > 1 for all I. 
From (18) it follows that U" < 0 for U > 0, and therefore U > (1 -x)/(l -xJ inside 
the interval x, < x < 1. Then using (1 - x)/( 1 - x,) instead of U in the right-hand side 
of (61) and F = I 2  4, we have 

Z 2  (1-t)dt u< 1-- 1 -x, 
z c  

The integral on the right-hand side of (62) is a positive function independent of I. Then 
for large enough I, U is negative for any x in the interval x, < x < 1. Thus, the 
conjecture that xp > 1 is contradicted. Therefore, the collapse must occur at some finite 
I =  I*. 

Curve C in figure 18 shows I* as a function of the cone angle. It has been calculated 
numerically with the help of the algorithm described in $4.2. Curve B shows IJx , )  
where swirling solutions appear. To find bifurcation values I = I*, the linear problem 
for the circulation has been solved numerically with the help of the algorithm similar 
to that described in $3.3 but with F = 12&. 

4.6.2. Nature of bifurcation 
To solve the nonlinear problem for the self-swirling regimes we integrate the system 

(3), (13), (42) as an initial-value problem from x = x, to x = 1 with conditions (7), (1 l), 
and (62) and some tentative values of F(x,), r,, and I. Usually F(x,) and I have been 
chosen to satisfy (4) and (6), and r, has been used as a free parameter. Figure 19 shows 
the results for 8, = 45". Line 1 at the abscissa corresponds to the non-swirling regime 
that terminates at I = I* = 27.7 due to the collapse. However, at I = I, = 12.7 the 
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FIGURE 19. Dependence of circulation at the surface r, on current Z for the primary (curve 1) and 
secondary (curve 2) solutions at section x, = 0.707 of figure 18. Z, and I* correspond to the swirl 
bifurcation and collapse, respectively. Other notations are the same as in figure 12. 
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FIGURE 20. As figure 19 but for larger Z and r,. Line A is an asymptote for S,, line A,  is an 
asymptote for C, and curves S,-S, correspond to subsequent flow separations. 

secondary swirling regime appears (curve 2 in figure 19). Since the abscissa, r, = 0, 
is a symmetry line, one can see that the supercritical pitchfork bifurcation takes 
place. Our calculations show that the swirl bifurcation is also supercritical in the 
whole range of the cone angle, 0 < x, < 1. We expect that the primary swirl-free 
solution becomes unstable after the bifurcation and show it by the dashed line in the 
interval 1, < I < I * .  Curves C, R, and S ,  in figure 19 are similar to those in figure 12, 
but calculated for 8, = 45" here. Each point above the collapse curve C in figure 19 
corresponds to a solution at given I and r,, but the self-swirling condition (1 1) is 
satisfied only at curve 2. 
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FIGURE 21. Dependence of dimensionless axial velocity Re, for the primary (curve 1) and secondary 
(curve 2) regimes. Line I =  I*  is an asymptote for curve 1. Zeros of Re,(Z) correspond to the 
subsequent flow separations. 

4.6.3. Separations in self-swirling8ows 
When curve 2 intersects curve S ,  as Zincreases, the first separation occurs in the self- 

swirling regime and the flow becomes two-cellular with inflows near both the surface 
and axis, and an outflow near some intermediate cone x = x, (see the sketch in region 
IV of figure 19). The following intersections of curve 2 with curves S,, S,, and S, shown 
in figure 20 correspond to the next separations, at which the flow becomes three-, four- 
and five-cellular, respectively. Since curve 2 is positioned below line R in figures 19 and 
20, the flow converges to the cone apex near the liquid surface for all I ,  but near the 
axis the flow alternately diverges to or converges from the apex as Z increases. Figure 
21 shows the dependence of the axial velocity on I calculated for 8, = 45". Curve 1 
corresponds to the swirl-free regime. Along this curve, Re, tends to infinity as Z 
approaches the collapse value I*  ; however, Re, decreases just after the bifurcation at 
I = Z* along curve 2 corresponding to the secondary self-swirling regime. Then as Z 
increases, Re, oscillates but has a decaying amplitude. Thus, the self-swirling flow 
becomes multi-cellular. What is a physical reason for this phenomenon? 

4.6.4. Physical mechanism for  the separation cascade 
Since the electromagnetic forces are directed toward the axis (see the sketch in figure 

11) they induce a converging-to-axis flow when Zis small, and the convergence becomes 
stronger as Iincreases. When swirl appears at Z > I*, it generates centrifugal forces that 
are directed away from the axis, i.e. opposite to the electromagnetic ones. The 
converging flow transports circulation to the axis (with a tendency to make the 
circulation distribution uniform) but the flow does not change the distribution of the 
electromagnetic forces. As a result, the centrifugal forces become dominant near the 
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axis and this leads to the first separation. When the flow becomes divergent in the near- 
axis cell, however, it transports the circulation away from the axis. Since circulation is 
zero at the axis, this convection causes the circulation to decrease in the vicinity of the 
axis. As a result, the electromagnetic forces overcome the centrifugal ones there and 
this leads to the second separation, and the corresponding appearance of the third 
recirculation cell near the axis with a converging-to-axis flow. Now, one can consider 
this inner cell, and as Z increases further, the separation process iterates. This physical 
image corresponds to the mathematical fact that, as Z increases, the first term on the 
right-hand side of (42) becomes alternately larger or less than the second term in a 
vicinity of x = 1 .  For an arbitrary given value of circulation at the surface, a balance 
of electromagnetic and centrifugal forces is possible that corresponds to the meridional 
motion being at rest (lines R in figures 19 and 20). However, for such an outcome, the 
special relation (41) between the current and circulation must be satisfied, and this is 
not the case for the self-swirling motion (compare curves R and 2 in figure 19). So for 
the self-swirling regime, one has the separation cascade instead of zero meridional 
motion. At first sight it seems rather striking that the separations occur even when the 
meridional flow near the axis becomes very slow, as illustrated by the dependence of 
Re,(Z) shown by curve 2 in figure 21 and which follows from the analysis in $3.4.4 in 
the vicinity of line R. To study this effect in detail and to find the asymptotic features 
of the self-swirling flow, we now consider the limiting transition I+m. 

4.6.5. Near-surface boundary layer 
One can see in figure 20 that curve 2, corresponding to the self-swirling flow, 

asymptotically (as I increases) approaches ray R, corresponding to the absence of the 
meridional motion. This means that the meridional motion becomes weak in 
comparison with the rotation and the circulation distribution tends to that described 
by (39) and (41). Nevertheless, the meridional motion stays significantly strong near the 
surface not to be governed by the linear system (44). To find the asymptotic character 
of the near-surface flow, one needs a boundary-layer approximation. 

Looking for inner variables, we use the transformation 

7 = a(x-xc), * = a(l -x,") W(7), F =  ay1 -X,")Z@($, 

r= Z[(1-X)+G(7)/~1/[(1 -xc>1/21, 

in (3), (13), and (22), and in the limit Z+co, obtain 

01 = z q 1  -x,)-4/5(1 +xc)-3/5, w' = CD+ ~ 2 1 2 ,  G" = w(G- 11, w = G, (63) 

where the prime denotes differentiation with respect to 7. Boundary conditions (7), 
( l l ) ,  and (32) are transformed to 

W(0) = 0, G'(0) = (1 -xC)/(l +x,), @'(O) = 0, (64) 

while (4) and (6) become 
W,G+O as 7 - m .  

The boundary value problem (63E(65) can be reduced to an initial-value problem by 
using tentative values for G(0) and @(O). Then we integrate (63) and (64) from 7 = 0 
to infinity and choose G(0) and @(O) to satisfy (65) with the help of the shooting 
procedure. Owing to (65), we can linearize (63) to reveal the solution behaviour at large 
7. This gives 

W"+ w = 0, 
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FIGURE 22. Comparison of the stream-function profiles calculated using the full NSE at Z = 5603 

(solid curve) and in the boundary-layer approximation (dashed curve). x, = 0.707. 

with the general solution, 

W = cl exp ( - 7) + exp ( -pl 7) [C, cos (wl r )  + C3 sin (wl 711 
+ exp (P, d [C4 cos (w, 7) + c5 sin ( 0 2  r)l, 

p1 = cos (%/5),  w1 = sin (27c/5), p z  = cos (7c/5), w2 = sin ( x / 5 ) .  

To satisfy (65),  C4 and C5 must be zero. The first term becomes negligible for 7 9 1, 
and, finally, we have W = Cexp ( -p l  7) sin (wl y -I- T ~ ) .  Therefore, the number of cells 
is obtained as N = awl(l -xC)/7c - (note that this result is similar to (60)). The 
maximum velocity value of the meridional motion is reached at the surface and is 
characterized by 

Re = ~ ( x J  = @(O) 14/5( 1 - xJ3I5( 1 + x,)-lI5. 

Since the maximum azimuthal velocity is characterized by T', = 1 / 4 2 ,  the radial/ 
azimuthal velocity ratio asymptotically tends to zero even in the near-surface layer. 

Owing to the second condition (64), the boundary-layer solution depends on x,. We 
have calculated G(0) and @(O) in the interval 0 < x, < 1 and, in particular, we have 
found that G(0) = -0.1772 and @(O) = 0.1 104 at x, = 0.707. For this x,, figure 22 
shows W(7) calculated in the boundary-layer approximation (dashed curve) and at 
I = 5603 by the algorithm described in $4.6.2. One can see that the curves are close for 
small 7, and this agreement is an additional check on both numerical procedures. The 
value of I stated above corresponds to the eight flow separation with I', = 3921 and 
Re = 212. The circulation distribution is very close to (39), with an oscillating deviation 
whose maximum value is at the surface and less than 1 %. 

5. Discussion 
5.1. Comparison of the self-swirling regimes in SSF and BFF 

We have found that for both surface and body forcing the primarily pure meridional 
flow in the liquid cones with 8, < 90" becomes self-swirling owing to the supercritical 
pitchfork bifurcation. Also, in both SSF and BFF, flow separation occurs as the 
swirl increases. However, as the swirl grows further, features of the self-swirling flows 
are different for the surface and body forcing. 
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For SSF, we have found that (i) the meridional motion is two-cellular, (ii) the inner 
cell occupies almost the whole flow region except a thin near-surface layer where the 
outer cell is positioned, (iii) the flow is directed toward the cone apex outside the near- 
surface layer, (iv) the rotation is weak in comparison with the meridional motion 
(compare (38) with (40)-(42)), and (v) the rotation is concentrated in the near-surface 
layer. 

These asymptotic features of the self-swirling regime are quite different for body 
forcing. Indeed, our asymptotic analysis for body forcing has revealed that (i) there is 
an infinite cascade of flow separation as the electric current lincreases, (ii) the thickness 
of all cells tends to zero as I-215, (iii) the flow direction alternates in the near-axis cell, 
(iv) the rotation dominates over the meridional motion, and (v) the circulation 
distribution is close to that for rigid-body rotation. (Note, to support the latter claim, 
that (39) can be rewritten as r = rc[sin (8/2)/sin (8,/2)]2 "N rc(f?/8c)z.) 

5.2. Separation cascade in a slow flow 

The infinite cascade of flow separations that we have found for the BFF case should 
not be too unexpected, despite the meridional flow being very slow, since the flow 
separation is a nonlinear phenomenon. An infinite sequence of eddies has been shown 
to exist in a slow flow inside a sharp corner between two rigid planes (Moffatt 1964). 
In the Moffatt example, the number of circulatory cells is infinite even when the 
Reynolds number tends to zero, and the size of the cells depends on the corner angle 
only. However, in our case, the number of cells grows and the size of each cell decays 
as the intensity of the forcing increases. Our case is closer to the flow in a deep 
container induced by a tangent force at the fluid surface, where the cell number also 
increases with the Reynolds number based on the surface velocity. 

5.3. Analogy with the hydromagnetic dynamo 
In the axisymmetric case, the equations for the magnetic induction are similar to that 
for the circulation and one can expect an analogous effect of magnetic field generation 
in primarily non-magnetic flows. There are so-called ' anti-dynamo ' Cowling's and 
Braginsky's theorems, see a review and details in Goldshtik & Shtern (1989, 1993), 
stating that the axisymmetric dynamo is impossible. However, the theorem conditions 
are not fulfilled for the similarity class considered, and bifurcation of the axisymmetric 
magnetic induction does occur in a number of conical flows (Goldshtik & Shtern 1989, 
1991, 1993; Petrunin & Shtern, 1993). The analogy between the swirl and 
hydromagnetic dynamo is also manifested in the asymptotic behaviour. Both the swirl 
and electric current are concentrated in a near-surface boundary layer as Re increases 
for SSF. 

The magnetic induction and velocity decay weakly, - r-l as r+m,  in the similarity 
class, whereas Braginsky's condition requires the decay to be as Y - ~ ,  at least. In 
particular, this means that the generation of the swirl and magnetic induction in conical 
flows is a large-scale process and is not localized in a small vicinity of the origin. Our 
recent studies support this claim, showing the instability nature of the appearance of 
swirl (Shtern & Barrero 1995) and induction (Shtern 1995). 

5.4. Instability mechanism 
The weak decay of the self-swirling solution at infinity (the circulation does not decay 
at all) poses the question whether the bifurcation in the similarity class is related to the 
instability and bifurcation of a realistic non-similar flow. The similarity solutions can 
approximate realistic flows only in some region, ri < r < y o ,  say, outside the vicinities 
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FIGURE 23. Destruction (curve 2) of the pitchfork bifurcation (curve 1) for a non-similar flow. 

of the meniscus apex and the capillary rim in electrosprays. Some deviations from the 
similarity are unavoidable at r = ri and r = r,. How do these disturbances influence the 
flow inside the region? It has been found that such disturbances decay for Re < Re,. 
However, for Re > Re,, a disturbance at the outer boundary, r = ro, grows (as r 
decreases) triggering the transition to the secondary swirling regime. This disturbance 
corresponds to a weak swirl at r = ro which is induced, say, by some asymmetry of the 
capillary tube. For Re 4 Re, the induced rotation is of solid-body type and the 
circulation rapidly decays to the apex. For Re > Re,, a kind of pumping mechanism 
acts. Owing to the circulatory character of the flow, the angular momentum (which is 
proportional to the circulation) is transported from the rim to the apex near the 
meniscus surface. When the liquid flows from the apex to the rim near the axis, a part 
of the angular momentum is not transported back but is transferred from the axis to 
the surface by viscous diffusion. This positive feedback results in cumulation of the 
circulation in the similarity region. As a result, the circulation value in the similarity 
region can become sufficiently larger than that near the rim. The cumulation process 
is saturated by the nonlinear effect : the cumulated swirl makes the meridional motion 
weaker (see curve 2, in figure 8). This decreases the transport and, therefore, the 
normal-to-axis transfer of swirl. Finally, the viscous diffusion in the r- and &directions 
reaches a balance at the secondary similarity regime. According to this physical 
interpretation, the circulatory character of the flow (i.e. inflow near the surface and 
outflow near the axis) is crucial for the cumulation to occur. A geometrical form of the 
meniscus (whether it is exactly conical or not) seems to be not so crucial for the 
pumping mechanism (but the use of the conical approximation drastically eases the 
analysis !). 

5.5. Destroyed bifurcation 
The above instability features and physical mechanism correspond to the slightly 
‘destroyed’ bifurcation shown in figure 23. Let rc be the circulation on the meniscus 
surface at some distance r from the apex. Also, let this value of r belong to the similarity 
region, ri < r < ro. Curve 1 shows an ‘ideal’ supercritical pitchfork bifurcation 
following from our results for the similarity problem. Curve 2 shows a destroyed 
bifurcation which seems to be relevant for a realistic flow. Along the upper branch of 
curve 2, rc is not zero at any Re. However, for Re < Re,, r, is proportional to its value 
at the rim (To) and can be very small and hardly observable. In contrast, for Re > Re,, 
r, does not depend on To, is close to its similarity value in the secondary regime, and 
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can be rather large. Such a scenario agrees with our experimental observations. At 
small values of a control parameter, swirl is not observed, but when the parameter is 
increased, swirl becomes so strong that the flow in the 1 mm meniscus looks like a 
tornado ! Moreover, vortex breakdown occurs and the corresponding separation 
'bubble' takes a conical form that agrees with the separation prediction in this paper. 
These observations of vortex breakdown in the meniscus are preliminary and need 
further study. 
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